Energy-Driven Image Interpolation Using Gaussian Process Regression
نویسندگان
چکیده
Image interpolation, as a method of obtaining a high-resolution image from the corresponding low-resolution image, is a classical problem in image processing. In this paper, we propose a novel energy-driven interpolation algorithm employing Gaussian process regression. In our algorithm, each interpolated pixel is predicted by a combination of two information sources: first is a statistical model adopted to mine underlying information, and second is an energy computation technique used to acquire information on pixel properties. We further demonstrate that our algorithm can not only achieve image interpolation, but also reduce noise in the original image. Our experiments show that the proposed algorithm can achieve encouraging performance in terms of image visualization and quantitative measures.
منابع مشابه
A New Technique for Image Zooming Based on the Moving Least Squares
In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...
متن کاملGaussian processes as an alternative to polynomial gaze estimation functions
Interpolation-based methods are widely used for gaze estimation due to their simplicity. In particular, feature-based methods that map the image eye features to gaze, are very popular. The most spread regression function used in this kind of method is the polynomial regression. In this paper, we present an alternative regression function to estimate gaze: the Gaussian regression. We show how th...
متن کاملImage interpolation and denoising for division of focal plane sensors using Gaussian processes.
Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only...
متن کاملReduced-space Gaussian Process Regression for Data-Driven Probabilistic Forecast of Chaotic Dynamical Systems
We formulate a reduced-order strategy for efficiently forecasting complex high-dimensional dynamical systems entirely based on data streams. The first step of our method involves reconstructing the dynamics in a reduced-order subspace of choice using Gaussian Process Regression (GPR). GPR simultaneously allows for reconstruction of the vector field and more importantly, estimation of local unce...
متن کاملBatch Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression
In this paper, we revisit batch state estimation through the lens of Gaussian process (GP) regression. We consider continuous-discrete estimation problems wherein a trajectory is viewed as a one-dimensional GP, with time as the independent variable. Our continuous-time prior can be defined by any linear, time-varying stochastic differential equation driven by white noise; this allows the possib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012